
RecipeScape: An Interactive Tool for Analyzing
Cooking Instructions at Scale

Minsuk Chang1, Léonore V. Guillain2, Hyeungshik Jung1, Vivian M. Hare3,
Juho Kim1, Maneesh Agrawala3

1School of Computing, KAIST, {minsuk, hyeungshik.jung, juhokim}@kaist.ac.kr
2Department of Communication Systems, EPFL, leonore.guillain@epfl.ch

3Computer Science, Stanford University, {vhare, maneesh}@cs.stanford.edu

ABSTRACT
For cooking professionals and culinary students, understand-
ing cooking instructions is an essential yet demanding task.
Common tasks include categorizing different approaches to
cooking a dish and identifying usage patterns of particular
ingredients or cooking methods, all of which require exten-
sive browsing and comparison of multiple recipes. However,
no existing system provides support for such in-depth and at-
scale analysis. We present RecipeScape, an interactive sys-
tem for browsing and analyzing the hundreds of recipes of
a single dish available online. We also introduce a compu-
tational pipeline that extracts cooking processes from recipe
text and calculates a procedural similarity between them. To
evaluate how RecipeScape supports culinary analysis at scale,
we conducted a user study with cooking professionals and
culinary students with 500 recipes for two different dishes.
Results show that RecipeScape clusters recipes into distinct
approaches, and captures notable usage patterns of ingredi-
ents and cooking actions.
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INTRODUCTION
Cooking recipes provide ingredients and step by step instruc-
tions for making a dish, and thousands of recipes are available
even for a single dish on the Internet. For example, searching
for chocolate chip cookie recipes on Yummly1 yields 40,000
recipes that span different sets of ingredients, required skills
and tools, levels of detail, and even varying arrangements of
commonly used cooking actions and ingredients for the dish.

1http://www.yummly.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

c© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3174025

These recipes are naturally crowdsourced instructions for a
shared goal. Their variety and scale present an opportunity to
understand usage patterns of cooking actions and ingredients
for different approaches to cooking a dish.

Imagine a chef who wants to be creative with chocolate
chip cookies to develop a new dessert menu. The chef has
many options to consider, for example, baking unique look-
ing cookies, making a pie using cookies as the crust, or using
a specific type of dough that doesn’t require baking. Where
should the chef start to research the different ways to make
or make use of chocolate chip cookies? Imagine a culinary
student who is asked to cook a classic tomato pasta and an
exotic tomato pasta for an assignment. What is the difference
between the set of recipes titled “classic” versus those titled
“exotic”? While thousands of recipes for a single dish are
available online, it’s difficult to browse, compare, and analyze
them for coming up with new ideas or interpreting different
cooking processes and their results.

For cooking professionals and culinary students, discovering
usage patterns of cooking actions and ingredients to under-
stand their implications is just as important as preparing a
delicious meal. From our interviews with 10 cooking pro-
fessionals, we learned that to mine and understand diverse
cooking processes, they compare and analyze recipes in three
different levels of granularity; groups of recipes, individual
recipes, and individual cooking actions or ingredients. From
a professional chef’s menu research activities to training in
culinary schools, a wide range of cooking practices empha-
size reinterpretation of dishes. Common approaches include
applying unusual cooking actions to usual ingredients, ap-
plying usual cooking actions to unusual ingredients, or both.
These tasks require grouping recipes into similar operational
patterns of cooking actions and ingredients, in-depth investi-
gation of individual recipes, and browsing and comparison of
individual cooking actions or ingredients.

In this paper, we present RecipeScape (Figure 1), an interac-
tive tool for analyzing hundreds of recipes for a single dish.
RecipeScape provides three main visualizations, addressing
each of the three data granularity levels in recipe analysis;
RecipeMap (Figure 1a) presents a bird’s-eye view of recipes
in clusters generated by the system. Each point on the map is
a recipe, and the distance between them indicates their simi-
larity. RecipeDeck (Figure 1b) enables an in-depth inspection
and pairwise comparison of individual recipes. RecipeStat
(Figure 1c) visualizes usage patterns of individual cooking
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Figure 1: RecipeScape is an interface for analyzing cooking processes at scale with three main visualization components: (a)
RecipeMap provides clusters of recipes with respect to their structural similarities, (b) RecipeDeck provides in-depth view and
pairwise comparisons of recipes, and (c) RecipeStat provides usage patterns of cooking actions and ingredients.

actions and ingredients. Providing these visualizations re-
quires processing and analyzing a large number of recipes. To
achieve this goal, we present a computational pipeline (Fig-
ure 6) that scrapes recipes available online, converts them into
a tree representation, and computes pairwise similarities. The
pipeline represents each recipe as a tree (Figure 2) to capture
the structural information (e.g., a sequence of actions, a set
of ingredients involved in an action) embedded in a recipe.
For accurate tree construction, we employ a machine-crowd
workflow to label cooking actions and ingredients in recipe
texts using a custom annotation interface(Figure 7).

In our crawled dataset of 487 chocolate chip cookie recipes
and 510 tomato pasta recipes, 27,879 verbs are tagged by
the Stanford CoreNLP’s Part-of-Speech tagger [16]. Among
them, our pipeline identified 14,988 verbs as relevant cook-
ing actions. Also, our pipeline corrected 9,987 cooking ac-
tions that were mislabeled by the tagger, which is 40% of the
cooking actions in the dataset.

In a qualitative evaluation with cooking professionals and
culinary students, we asked participants to carry out a series
of browsing and comparison tasks as well as to freely explore
for new discoveries. Participants found data-driven evidence
for subjective attributes of recipes like “general recipe” or
“exotic recipe”. They also discovered usage patterns of cook-
ing actions and ingredients that distinguish one recipe cluster
from another, by combining insights from the three visualiza-
tions of RecipeScape.

This paper makes the following contributions:

• Design goals for systems that aim to support analysis
for cooking professionals by examining recipes in aggre-
gate. These are identified from interviews with profes-
sional chefs, patissiers, cooking journalists, recipe website
managers, and food business researchers.

• RecipeScape, an interactive visual analytics interface
that enables browsing, comparison, and visualization of
recipes at scale and supports analysis on three different



Figure 2: A tree generated by RecipeScape for “Daniela’s
Brownie” recipe, https://www.epicurious.com/recipes/
food/views/danielas-brownies-104362.

levels of data granularity: clusters of recipes, individual
recipes, and individual cooking actions and ingredients.

• A computational pipeline that scrapes recipe instructions
from online websites, extracts the cooking action and in-
gredient information using a machine-crowd workflow,
translates them into a tree representation, and computes
similarities between pairs of recipes.

RELATED WORK
In RecipeScape, we focus on analyzing structures in cooking
instructions at scale. It builds on prior work in three research
areas; (1) data-driven culinary analytics (2) visual analytics
for structured data (3) tree representations and comparison
methods for recipes

Data-Driven Culinary Analytics
The research community has investigated a wide range of
computational methods for analyzing and mining cooking
knowledge. For example, constructed using a large dataset of
ingredients, ingredient networks [30] and flavor networks [1,
33] can judge which ingredients go well together and which
ones do not. They can also be used to recommend recipes
with replaceable ingredients [28]. Deep neural networks can
be trained to translate recipes from one style of cuisine to an-
other [12], or to generate flavorful and novel recipes as well
as humans [20], or to generate a high-quality text recipe from
a food image and vice versa [25]. Also, ingredient similarity
can predict recipe ratings [37], and user reviews of recipes
can predict their attributes [6]. Features extracted from the
recipe text can predict the gender of the recipe uploader [21].
PlateMate [17] analyzes nutrition information from food pho-
tographs using crowdsourcing. PlateClick uses a quiz-like vi-
sual interface for comparing two food images to elicit user’s
food preferences [35].

While most existing research focuses on analyzing recipes
using ingredient similarities and food image similarities,
RecipeScape introduces structural similarity to data-driven
culinary analytics. We use a tree (Figure 2) to represent a
recipe structure. In RecipeScape, the structural similarity of

recipes is dependent on both syntactic similarities from the
tree shape, and on semantic similarities between the node la-
bels that represent ingredients and actions.

Visual Analytics for Structural Data
Interfaces for analyzing instructions and workflows have been
a subject of rich prior work. Sifter [18] is an interface for
browsing, comparing, and analyzing a large collection of
web-based image manipulation tutorials. Delta [13] is an in-
terface for comparing pairwise similarities of image process-
ing workflows. Visualizing histograms of parameters such
as stroke length and brush sizes helped 3D artists to com-
pare digital sculpting workflows [26]. Visualizing worker
behavior and worker output in crowdsourcing workflow has
been found to be effective for crowdsourcing quality con-
trol [23]. Visualizing sequences of intermediate steps stu-
dents take in problem-solving helped identify different strate-
gies and points of confusion [34]. Visual analytics tools
can analyze temporal data, such as tracking and comparing
different versions of a slide deck [7], mining statistical in-
sight from event sequences [15], analyzing patterns in health
records [27], and finding similar student records [8].

To support analysis of recipe instructions at scale, our ap-
proach extends existing research on interfaces for instruction
analysis by combining visualization and analysis on clusters
of instructions with the lower level analysis features.

Tree Representation and Similarity Comparison
There are two areas where tree representations are widely
used to compare structural similarities: comparing phyloge-
netic trees in bioinformatics and detecting code clones in soft-
ware engineering. Additionally, we discuss how tree edit dis-
tance could be applied to culinary analytics.

A phylogenetic tree is a branch diagram which repre-
sents evolutionary dependencies of biological species. Re-
searchers in bioinformatics have been comparing phyloge-
netic trees by using statistical and structural metrics such
as maximum-likelihood of evolutionary parameters [36],
neighbor-joining [24], and nodal-distances [3].

Tree similarity comparisons are also popular in code clone
detection. For judging structural similarities in code clones,
algorithms use features like characteristic vectors [9], syntax
patterns [14], and token sequences of syntax trees [2, 11]. For
judging semantic similarities, algorithms use graph isomor-
phism methods to dependency graphs [22] of source code,
where nodes represent expressions and statements.

To compute recipe structure similarity, we use a tree edit dis-
tance [29] method. Tree edit distance methods find a se-
quence of operations like addition, deletion, and substitution
of nodes, each associated with a cost, which minimizes the to-
tal cost to convert one tree to another. Computing the edit dis-
tances between unordered, labeled trees is NP-Complete [39]
even for binary trees with the label alphabet size of two. How-
ever, we build recipe representation as an ordered tree, i.e.,
the first child of every node is always a cooking action. We
then employ polynomial-time algorithms for ordered labeled
trees [38, 39] to calculate the edit distances.

https://www.epicurious.com/recipes/food/views/danielas-brownies-104362
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FORMATIVE STUDY
We conducted a series of interviews with cooking profession-
als to understand how they use online recipes in their cur-
rent analysis practices and how they might benefit from using
them more efficiently.

Interviews
We interviewed 2 professional chefs (10 or more years of
experience), 1 patissier (5 years of experience), 2 cooking
journalists (20 years of experience, 5 years of experience), 2
recipe website managers (3 years of experience), and 3 food
business researchers (15 or more years of experience).

Each session took approximately 90 minutes and included a
semi-structured interview followed by a feedback session on
the general idea of exploring recipes at scale.

We asked our participants (1) what kinds of recipe analysis
are involved in their daily job and what their current practices
are, (2) what additional analysis would make their job more
convenient, and (3) what analysis could increase and expand
their capabilities.

After open-ended discussions, we presented component
sketches designed to support recipe exploration at scale to en-
courage further discussion and ground their feedback. We
used these low-fidelity sketches since exploring recipes at
scale is an unaccustomed concept even for professionals. The
participants were encouraged to think aloud while they were
browsing and comparing recipes using the components pre-
sented in the sketches2.

Results

Current Practice: Casual but Interrogative Browsing
When developing new menus, professional chefs and
patissiers said they compare recipes and search for unusual
ingredients or creative uses of usual ingredients. A profes-
sional chef noted, “There’s no such thing as a completely
novel recipe”, and emphasized the importance of casually
browsing a variety of recipes to maximize exposure to diverse
recipes even for a single ingredient or a single dish.

When planning an article about a specific dish, both cooking
journalists explained that they browse more than ten differ-
ent recipes to understand common cooking actions, common
ingredients, and common tips and hacks. They visit restau-
rants and ask the chef about the recipe, or use cookbooks and
publicized recipes by famous chefs to grasp these character-
istics. When they write articles with specific themes, they
sometimes ask chefs to either devise or introduce recipes that
are unfamiliar to the general public.

Recipe website managers examine recipes and label them
with tags for feeding the recipes into their search engine. This
is manually done, because existing algorithms available to
end users cannot accurately provide rich and appropriate tag
labels.

2The component sketches are available in the supplemental materi-
als.

In summary, cooking professionals with analytical needs
commonly search for unusual ingredients and cooking pro-
cess, casually browsing a variety of recipes for a single dish.

Desired Information: Statistics of Recipes
While all participants agreed they want to be able to easily
find recipes with uncommon cooking actions and ingredients,
their reasons are different. We found professional chefs and
patissiers rely on reverse engineering a dish to study unusual
usages of a specific cooking skill or an ingredient. But reverse
engineering requires a lot of trial and error and exact replica-
tion is very hard to achieve. Cooking journalists are interested
in creative variants or unusual reinterpretations of a dish to be
able to introduce them to the public. However,“creative” and
“unusual” are very subjective measures, and they normally
spend weeks trying to find something unimaginable for their
audience. Recipe website managers are interested in standard
recipes, and evidence to claim “standardness” of the recipes.

Food business researchers want to measure to what extent a
de-facto standard version of a dish has been established. They
explained if recipes are more standardized for a specific food,
it is likely to be a saturated market, whereas if the recipes
vary, the corresponding food business is still in its growth
stage. It is used as one of the metrics to evaluate the market
cycle and to predict an upcoming trend in the food business.

All participants want a categorization feature. Suggested
ideas of categorization criteria include specific ingredient
constraints like ”gluten-free” or ”sugar-free”, cooking tool
constraints like ”no oven” or ”microwave only”, and types of
cuisine. They also want more subjective criteria like unique-
ness, difficulty of the recipe, and different ways of cooking
the dish.

In summary, recurring needs expressed by the professionals
are methods for discovering common and uncommon cook-
ing actions and ingredients, and clues from which they could
answer questions like how a set of recipes differ from another
set of recipes, and what factors contribute to the difference.
Also, participants want to easily discover ”average” or ”stan-
dard” versions of a dish, and evidence of subjective attributes
like uniqueness or difficulty of recipes.

System Design Goals
Two researchers iteratively analyzed the interview data more
than four times in total with an interval of at least two days
between sessions to enhance validity. We identified 52 topics
during this process, and subsequently clustered these topics
into 13 different themes.3 From the 13 topics, we focused
on the needs that would benefit most from exploring recipes
at scale. We excluded several classes of topics beyond the
scope of this work: (1) those requiring information that is
unavailable in online recipes, such as trends and cultural in-
formation; (2) those relevant to real-time cooking support like
hacks and mistakes; and (3) those already supported by exist-
ing systems, like categorization criteria and ingredient-based
information.

3The 52 topics and 13 themes are available in the supplemental ma-
terials.



Four researchers independently brainstormed hypotheses and
frames of explanation for the remaining topics. Through
rounds of discussion, we agreed that the data granularity
framework is most explanatory. Then we classified the re-
maining topics into their data granularity and derived the
three design goals.

The interview results emphasize the need to provide users
with an interactive analytics system that enables browsing
and comparing recipes. Based on the analysis of the inter-
views and the participants’ suggestions, we identified three
design goals for tools to support recipe analysis at scale.
The individual design goals address three different levels of
data granularity for recipe analysis: ingredients and cooking
actions (D1), recipes (D2), and clusters of recipes (D3).

D1. Provide statistical information about ingredients and
cooking actions to support analysis at the individual in-
gredient/cooking action level, such as answering ques-
tions like “what are some unusual ingredients?” and
“what are some unusual cooking actions?”.

D2. Provide in-depth examination and comparison of in-
dividual recipes to support instruction level analysis,
such as answering questions like “what are the de-
tailed step by step instructions of this recipe?” and
“what are shared instructions and ingredients between
two recipes?”.

D3. Provide analysis for recipes in aggregate to support
cluster level analysis and between-cluster similarities
and across-cluster differences, such as answering ques-
tions like “what makes a set of recipes standard of the
dish?”, “what are some creative variants of this recipe?”,
and “what are different ways of cooking the dish?”

RECIPESCAPE
To address these design goals, we present RecipeScape (Fig-
ure 1), an interactive tool that enables browsing, comparison,
and analysis of recipes at scale. RecipeScape provides three
main components: RecipeMap, RecipeDeck, and RecipeStat.
RecipeMap (Figure 3) provides an overview of recipes with
cluster information. RecipeDeck (Figure 4) provides infor-
mation about individual recipes with the original description,
the corresponding tree representation, and pairwise compari-
son of recipes. RecipeStat (Figure 5) provides the usage pat-
terns of cooking actions and ingredients in the selected clus-
ters of recipes from RecipeMap.

RecipeMap
RecipeMap (Figure 3) supports queries related to D3 (Pro-
vide analysis for recipes in aggregate), e.g., the prototypi-
cal recipes, outlier recipes, and a bird’s-eye view of different
clusters of recipes for a specific dish. Each point on the map is
a recipe. The distance between recipes reflects the structural
similarity of the respective recipe instructions. The prototyp-
ical recipe, i.e., most structurally representative one in each
cluster, is marked with a star (Figure 3c). Users can select
clusters by clicking on the color key at the bottom (Figure 3a).
Users can also select any recipe on the map (Figure 3b) for
an in-depth view. When one or more clusters are selected,

Figure 3: RecipeMap provides clusters of recipes with respect
to their structural similarities.

RecipeStat updates to only reflect the information in the cho-
sen clusters. Similarity metrics and clustering algorithms are
discussed in the Computational Pipeline Section.

RecipeDeck
RecipeDeck (Figure 4) supports queries related to D2 (Pro-
vide in-depth examination and comparison of individual
recipes). User-selected recipes in RecipeMap are added here
(Figure 4b), with a default view of the tree representation.
The tree in this view does not have any labels, allowing users
to focus on structural comparisons of multiple recipes on
RecipeDeck. Users can click on the magnifier icon (Fig-
ure 4c) for a detailed popup with the recipe text and the la-
beled tree representation. Users can also click on the right
arrow icon to view textual instructions without invoking the
popup. Furthermore, users can perform a pairwise compari-
son of two recipes by selecting two recipes on RecipeDeck,
and then clicking “compare”. Upon clicking, a popup (Fig-
ure 4a) opens with a side-by-side comparison of cooking
action sequences and an ingredient comparison of the two
recipes in a Venn diagram.

RecipeStat
RecipeStat (Figure 5) supports queries related to D1 (Provide
statistical information about ingredients and cooking actions).
For the 10 most used cooking actions in the selected clus-
ters of recipes, users can examine how each cooking action is
used at different stages of the cooking process in recipes of



Figure 4: RecipeDeck: RecipeDeck displays (b) user selected
recipes and provides (c) a detailed view and (a) pairwise com-
parisons of recipes.

Figure 5: RecipeStat provides temporal usage trends of cook-
ing actions and ingredients, and co-occurrences patterns of
cooking action-ingredient pairs.

the selected cluster. This information supports the discovery
of different approaches to cooking a dish. For example, users
can click on the recipes with “Preheat” occurring in differ-
ent stages of the cooking process (Figure 5a). Users are able
to hover the bars on the histogram to see which recipes corre-
spond to the specific selection. The corresponding recipes are
highlighted in RecipeMap, and are added to RecipeDeck with
a click. Users can also click on the top three most used ingre-
dients next to each cooking action label to view the usage
pattern of cooking action-ingredient pairs like cool-cookies
(Figure 5b). When the cluster selection changes, RecipeS-
tat recalculates the statistics and redraws the histogram. The
same visualization and functionality is also provided for the
10 most used cooking ingredients.

COMPUTATIONAL PIPELINE
In this section, we describe the underlying pipeline (Figure 6)
of RecipeScape for constructing graphical representations of
recipes and obtaining similarity metrics by highlighting the
data gathering, parsing, and similarity comparison steps.

Data Gathering
In the data gathering step, we crawl all search results
for a queried dish, like chocolate chip cookie and tomato
pasta, from recipe websites that use the schema.org’s Recipe
scheme4. Schema.org’s schemes are agreed templates for
storing structured data, with specific document elements like
ingredients and instructions. Most major recipe websites use
the Recipe scheme as their internal representation, which
makes using it for data gathering step more generalizable.

Parsing
In the parsing step, we use a Stanford CoreNLP [16]’s Part-
of-Speech (POS) tagger to label verbs and nouns in recipe
instructions crawled in the data gathering step. Most state-
of-the-art POS taggers are statistically trained using mostly
declarative sentences. As a result, their performance is rather
limited with imperative sentences in recipe instructions like
4http://schema.org/Recipe/



Figure 6: Our computational pipeline combines Part-of-
Speech tagging and human annotation to convert recipe text
into a tree representation, and calculates pairwise distance be-
tween recipes.

“Whisk in chocolate hazelnut spread until combined and re-
move from heat.”. The parsers recognize “Whisk” as a noun
and “spread” as a verb, but they are a verb and a noun in
this sentence, respectively. To overcome this drawback and to
more accurately identify tokens for cooking actions and cook-
ing ingredients, we recruited 12 annotators to use a custom
web-based interface (Figure 7) for annotating recipe instruc-
tions. After an iteration with the POS tagger, the crowd an-
notator fixes the tags that are labelled incorrectly. The parser
then generates an ordered tree representation for each recipe,
where the first child of every node is a cooking action and the
siblings are the ingredients involved in that action.

There are several reasons we decided to use a tree struc-
ture over a sequence. Our preliminary study [4] using a se-
quence of cooking actions and ingredients, and string edit
distances did not yield meaningful clusters to users, mean-
ing the sequence representation did not capture meaningful
structural differences in the cooking context. The clustering
result was highly sensitive to the length of the sequences (Fig-
ure 8), which motivated us to consider a branching structure

Figure 7: A web-based annotation interface for correctly la-
beling recipe actions and ingredients.

rather than a linear structure. Also, there exists information
that cooking actions or ingredient alone cannot capture. For
example, generic action verbs like “place”, “remove”, and
“heat” yields different interpretations depending on whether
they are associated with ingredients or cooking tools. Thus it
is advantageous to incorporate a hierarchical structure.

Similarity Comparison
In order to obtain similarities between recipes, we use a tree
edit distance [38], a commonly used technique for comparing
tree structures. It finds a sequence of operations like adding,
removing, and relabeling nodes, each associated with a cost,
which minimizes the total cost to convert one tree to another.
To incorporate the semantic difference between individual
cooking actions and ingredients in capturing the structural
difference, we dynamically adjust the weights associated with
the relabel operations. These weights are calculated from a
pre-trained word embedding model with one million recipe
instructions [25]. We use the cosine similarity between two
words in the embedding space as the weight associated with
relabel operations; the associated cost then is (1 − weight),
because weight is the similarity, and the cost is the difference.
This is motivated by intuition that a resulting structure from
replacing “mix” with “add” should be considered more sim-
ilar than that of replacing “mix” with “heat”. For add and
remove operations, we assign a unit length cost of 1. This
discourages adding and removing of nodes and promotes re-
labeling of nodes. It is another attempt at making difference
measures less sensitive to lengths of the structure, a limitation
we encountered when using a sequential representation.

This similarity information is stored in a pairwise distance
matrix, where each element is the tree edit distance between
the corresponding recipes. The distance matrix is then con-
verted into x,y coordinates using the Gram matrix [32, 5] to
preserve distance information. We use the calculated coordi-
nates to plot the recipes on RecipeMap for a bird’s-eye view
of structural similarities between all recipes. To highlight the



Figure 8: Lengths of recipes and their cluster membership shown with colors: this clustering result is based on sequence repre-
sentation, and are dominated by the sequence lengths.

(a) A Dendrogram (b) The Elbow Method

Figure 9: (a) Dendrogram for chocolate chip cookie recipes.
(b) Elbow Method: a plot of unexplained variance vs number
of clusters: adding another cluster at six clusters does not
improve the validity. From both (a) and (b), six clusters seem
reasonable.

structurally different clusters of recipes, we use hierarchical
clustering [10]. Hierarchical clustering methods do not re-
quire the predetermined number of clusters before the anal-
ysis, which is common in other popular clustering methods,
e.g., K-means clustering. With hierarchical clustering, the re-
searcher can choose the most appropriate number of clusters
that suits their analytical purpose after calculating the simi-
larities in the data. We found this post-analysis control over
the number of clusters advantageous in this study, because we
do not know how many distinct approaches to cooking a dish
exists in advance. To decide the number of clusters to dis-
play to users, we used both dendrogram [19] and the elbow
method [31]. A dendrogram is an arrangement of the clus-
ters produced by hierarchical clustering based on a distance
metric. The elbow method provides a graph of the amount
of variance explained by the number of clusters. There is
no definitive answers to how many clusters should be se-
lected, because the interpretation of the resulting hierarchi-
cal structure is context-dependent and often several solutions
are equally good. For our chocolate chip cookie example, the
dendrogram (Figure 9(a)) suggests six clusters are a reason-
able choice. Consulting the elbow method plot (Figure 9(b)),
adding another cluster at six causes a minimal change on the
slope, so we pick six clusters.

Pipeline Results
Dataset: We crawled 487 recipes for “chocolate chip cookie”
and 510 recipes for “tomato pasta” from epicurious.com.
We chose chocolate chip cookie and tomato pasta because
they are popular and accessible dishes.

Parsing Accuracy: The ground truth label for all 214,109 to-
kens in the crawled cooking recipes are unavailable to assess
the precision/recall accuracy. However, we made a signif-

icant improvement over the baseline parser. Out of 27,879
verbs tagged by the Stanford CoreNLP’s POS tagger [16],
14,988 were cooking actions confirmed by human annotators.
This means only 54% of the machine-tagged labels are rele-
vant to culinary analysis. Furthermore, human annotators cor-
rected 9,987 cooking actions the NLP tagger mislabeled. This
counts up to 40% of the final 24,975 cooking action verbs
used in the study, which represent improvements realized by
human annotation.

RECIPESCAPE PROJECT WEBSITE
We provide links to our dataset, source code repository, and
dashboard interface at https://recipescape.kixlab.org/.

EVALUATION
RecipeScape is a tool for open-ended discovery by exploring
cooking recipes of a single dish at scale and is not designed as
an assistant to improve cooking skills. Hence, we investigated
the effectiveness of novel exploration techniques for the pro-
fessional analytic needs with open-ended qualitative studies
rather than a task-based evaluation that measures an improve-
ment over a baseline. Goals of evaluation were (1) to assess
the feasibility of representing cooking process as a tree, and
(2) to gain feedback on the effectiveness of RecipeScape in
answering the following analytical questions that follow from
the three design goals:

Q1. What are patterns of common and unusual ingredient and
cooking action usage?

Q2. What are different ways of cooking a dish?

Q3. What are representative recipes of cooking a dish?

Q4. What are outlier recipes of cooking a dish?

Q5. What are the simplest and most complex recipes of cook-
ing a dish?

Q6. What is the evidence for answers in Q1-Q5?

User Study with Cooking Professionals
We reached out to the same experts we interviewed in the
earlier stage of the research for understanding analysis tasks
of cooking professionals. Among them, two recipe website
managers, one professional chef, and one cooking journalist
participated in the interface evaluation study followed by a
semi-structured interview, which lasted two hours. Experts
were given a 5-minute tutorial of the interface and asked to
freely explore and evaluate RecipeScape. They were asked to
choose one or more clusters on RecipeMap and find charac-
teristics that define the cluster. Experts were encouraged to
think aloud as they browsed and compared recipes, and how
they interpreted the findings.

epicurious.com
https://recipescape.kixlab.org/


Lab Study with Culinary Students
We invited 7 culinary students in a 90-minute session each.
Participants were first asked to fill out a questionnaire on their
current practices of searching and browsing recipes, i.e., how
they search for recipes, when and how often they search for
recipes. They were given a brief tutorial of the RecipeScape
interface. Then they were asked to explore and use the in-
terface. After participants indicated that they felt confident
using the interface, we gave them 30 minutes to evaluate the
interface by carrying out tasks to answer the questions Q1
to Q6 outlined above. A session ended with an interview to
understand deeper the observed interface usage patterns, and
solicit qualitative feedback about the interface.

Results
We summarize the results and present main findings with re-
spect to the three design goals, patterns of tool usage, and
usability and usefulness of RecipeScape.

D1. Ingredient and action level analysis
The professional chef made an observation that recipes with
must-have ingredients are plotted at the center of RecipeMap,
and the outer ring of the recipes have additional ingredients
that go well with the dish but are not necessary. The chef
found the recipes on the edges to have ingredients that re-
flect more personal preferences, such as use of goat cheese
and artichoke for pasta. The chef was also surprised to see
recipes that use salt in the later stages of cooking pasta in
RecipeStat, as opposed to the convention of using it in earlier
stages, e.g. cooking pasta noodles in salted water. He men-
tioned, “This is a professional tip that good restaurants use to
make the first spoon of pasta taste extra sweet. If you put salt
on tomato, it really brings out the sweetness. I’m surprised
this hack is captured.” For one cluster of chocolate chip
cookie recipes, the cooking journalist wanted to find cookies
with decorations, and examined RecipeStat for recipes where
“cover” was mostly used in later stages of the recipes. The
corresponding highlighted recipes in RecipeMap agreed with
her hypothesis. One student participant used the identical ap-
proach to find recipes with sugar frosting.

D2. Individual recipe level analysis
The professional chef spent significant time examining indi-
vidual recipes near the edge of RecipeMap. He noted “We
(professional chefs) sometimes start from a specific main in-
gredient and seek creative interpretations. I find these recipes
near the edges are more exotic.”

The cooking journalist frequently used the pairwise compar-
ison of two adjacent recipes on RecipeMap to examine re-
placeable ingredients and actions.

Four out of seven student participants found the tree diagram
in the in-depth view especially helpful for grasping the over-
all process of individual recipes and they felt confident about
cooking the dish only by looking at the tree. One student
specifically noted, “I find recipes in the usual text format hard
to visualize the process, because the ingredient sections and
the instruction sections are separate. But this tree diagram
summarizes the process very well, I can easily picture the
cooking process.”

D3. Cluster level analysis
Two experts and five out of seven student participants men-
tioned the clusters reflect different ways of cooking very well.
After selecting a cluster from RecipeMap, experts examined
RecipeStat and formed hypotheses of what some characteriz-
ing attributes of the cluster might be. Then they used other
components to verify their hypotheses. For example, the
cooking journalist looked at one cluster and noticed there are
baking soda and baking powder in the most used ingredients
list in RecipeStat. She immediately mentioned, “Recipes in
this cluster probably do not use any eggs and probably in-
volve baking in the later stages.”, which was confirmed by
examining the recipes in the cluster in detail. The journalist
also found a cluster where water was in the most used ingre-
dients list in RecipeStat. She then checked whether there is
“chill” or “cool” in RecipeStat for cooking actions. When she
found “chill”, she mentioned “These are the recipes for more
crispy cookies. You use water so the ingredients don’t stick as
much, resulting in crispy cookies. This kind of dough tastes
better when you cool them.” After reviewing a few recipes
in the cluster, the hypothesis was verified. The professional
chef discovered “salted water” in RecipeStat for one cluster.
He then mentioned “I would trust the recipes in this clus-
ter more than the other ones. The fact that people described
salted water, not just water, implies the instructions are more
friendly and detailed.” Upon examining a few recipes in the
cluster, the recipes were indeed more detailed than the others.

Patterns of Tool Usage
Every participant started from RecipeMap by choosing clus-
ter(s) of their interest. Then they would select recipes in the
center of the clusters and examine them in detail. Some would
repeat these steps back and forth, but RecipeStat was always
used in the last stage. When asked, participants explained
RecipeMap is a good place to start analysis due to its simi-
larity presentation. We learned the design of RecipeStat as-
sumed knowledge of histograms, which some participants did
not have. Participants explained they needed to examine a
few individual recipes in depth to understand the information
displayed in RecipeStat, which led to the usage pattern.

Usability and Usefulness of RecipeScape
The professional chef and cooking journalist noted
RecipeScape would be useful for learning about recipes.
The professional chef mentioned he would use this tool to
understand a dish that he does not have much experience
in. The cooking journalist wanted to use RecipeScape for
Bibimbap, a traditional Korean dish. She explained there
are many recipes of Bibimbap in English, because it is
internationally popularized. She said RecipeScape would
reveal diverse approaches that capture how this traditional
dish is interpreted outside Korea.

Six student participants noted they want to use this tool
in their studies if it supported dishes of their interest.
They found similar recipes being located closely together in
RecipeMap to be useful in comparison to existing services
they use, because browsing in RecipeScape does not involve
going back and forth between the list of search results and
the specific recipe page. Three student participants also men-



Figure 10: Usage patterns of two contrasting action-
ingredient pairs (beat-butter and drop-dough) in chocolate
chip cookie recipes.

tioned RecipeScape would be useful when they’re preparing
for cooking contests, where they have to reinterpret an exist-
ing dish. Using RecipeMap to explore various recipes helped
them not only brainstorm ideas but also simulate how their
interpretations can be translated into recipes. For example,
one participant said “I had thought about using liquor for
making creative cookies (as an assignment), but was not sure
how I could do it. I was able to spot a recipe that uses
liquor (Frozen Grand Marnier Torte with Dark Chocolate
Crust and Spiced Cranberries) just by browsing the recipes
outside (near the edges), and it helped me understand better
how liquor could be used in cookies.”

DISCUSSION
We discuss findings, generalizability and possible limitations
of this work.

Expert Knowledge in Naturally Crowdsourced Data
We observed an interesting example of an expert knowledge
recovered in the analysis of crowd generated recipes sup-
ported by RecipeScape. Butter cream, made by beating the
butter, is added in the last step of making the dough, be-
cause it inhibits gluten formation. According to RecipeStat,
the beat-butter pair (Figure 10a) occurs mostly in the begin-
ning of the cooking process, and drop-dough (Figure 10b),
an intermediate product of making the dough, occurs after
the creamed butter is made. Extending from this observation,
it would be meaningful to further identify and characterize
expert knowledge that is transferred and not transferred for
informing further interaction designs around instructions.

Structural Representation and Parser Accuracy
In this research, the low accuracy of the NLP parser in gen-
erating the structural representation could make the analy-
sis challenging. Ill-structured text and non-standard phrasing
can lead to mislabels. To minimize confusion in such cases,
we show the original recipe text next to the tree diagram in
the detailed view for the parser errors to have less impact on
user tasks. With a better performing Part-of-Speech tagger
that successfully detects action verbs in imperative sentences,
RecipeScape can immediately benefit from the algorithm by
replacing the parser module.

Explainability of Clustering Algorithm
RecipeScape only provides clusters of recipes and does not
provide explanations of the clustering results. In the end,

users will have to make sense of the clusters generated by
the algorithm. While this is inevitable for all clustering al-
gorithms, we do have control over choosing the number of
clusters after the similarity calculations. A number of ways
can improve the explainability. Supporting manual labelling,
or accompanying carefully designed topic modelling to gen-
erate themes for each clusters, or both could benefit the users.

Generalizability of the Pipeline
While RecipeScape is focused on culinary analytics, our
pipeline is generalizable and could potentially apply to ana-
lyzing other instructions at scale. Researchers have explored
how to present other kinds of procedural instructions like im-
age manipulation tutorials, sculpting workflows. It varies in
degree, but even in assembly or in photo manipulation tutori-
als where it seems like there is only one correct sequence of
operations, there are often multiple feasible solutions. For ex-
ample, when assembling a chair, one can start from the legs,
the back, the armrests. A systematic analysis of instructions
across domains is open to future study, but we believe our
approach is still applicable to other domains.

Scalability of the Pipeline: More Data Dimensions
Our structural similarity comparison of tree representations
allows adding more dimensions like time or tools. There re-
mains a design decision of whether to treat these dimensions
as separate nodes or as parameters of cooking action. Re-
gardless, dynamically retrieving edit distance weights from a
vector embedding space handles the semantic similarities of
different dimensions. However, visualizing multiple dimen-
sions and presenting them with meaningful interaction is an
open challenge, which we hope to address in future work.

CONCLUSION AND FUTURE WORK
This paper presents RecipeScape, an interactive system for
analyzing hundreds of recipes for a single dish by visualizing
summaries of their structural patterns. Our user study with
cooking professionals and culinary students demonstrates
that RecipeScape provides data-driven evidence to usual and
unusual ingredients and cooking actions, common and exotic
recipes, and different approaches to cooking a dish.

There are a number of directions for possible future studies.
As an immediate next step, we plan to extend this work to
video-based recipes and how-to videos. Examining rich con-
text embedded in videos in aggregate could uncover trends
and patterns, and analyzing them at scale will be able to pro-
vide answers to questions text recipes at scale cannot.
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